Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.149
Filtrar
1.
J Nanobiotechnology ; 22(1): 184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622644

RESUMO

Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Leucócitos Mononucleares , Terapia Neoadjuvante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557176

RESUMO

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Linhagem Celular Tumoral
3.
J Nanobiotechnology ; 22(1): 168, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610015

RESUMO

BACKGROUND: Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system. Thus, based on the tumor-targeting and immune evasion abilities of macrophages, macrophage membrane-encapsulated poly(methyl vinyl ether alt maleic anhydride)-phenylboronic acid-doxorubicin nanoparticles (MM@PMVEMA-PBA-DOX NPs), briefly as MM@DOX NPs, were designed to target OSCC. The boronate ester bonds between PBA and DOX responded to the low pH value in the tumor microenvironment, selectively releasing the loaded DOX. RESULTS: The results showed that MM@DOX NPs exhibited uniform particle size and typical core-shell structure. As the pH decreased from 7.4 to 5.5, drug release increased from 14 to 21%. The in vitro targeting ability, immune evasion ability, and cytotoxicity of MM@DOX NPs were verified in HN6 and SCC15 cell lines. Compared to free DOX, flow cytometry and fluorescence images demonstrated higher uptake of MM@DOX NPs by tumor cells and lower uptake by macrophages. Cell toxicity and live/dead staining experiments showed that MM@DOX NPs exhibited stronger in vitro antitumor effects than free DOX. The targeting and therapeutic effects were further confirmed in vivo. Based on in vivo biodistribution of the nanoparticles, the accumulation of MM@DOX NPs at the tumor site was increased. The pharmacokinetic results demonstrated a longer half-life of 9.26 h for MM@DOX NPs compared to 1.94 h for free DOX. Moreover, MM@DOX NPs exhibited stronger tumor suppression effects in HN6 tumor-bearing mice and good biocompatibility. CONCLUSIONS: Therefore, MM@DOX NPs is a safe and efficient therapeutic platform for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Distribuição Tecidual , Macrófagos , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Microambiente Tumoral
4.
Nano Lett ; 24(15): 4354-4361, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563599

RESUMO

The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Nanopartículas , Humanos , Feminino , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microambiente Tumoral
5.
Commun Biol ; 7(1): 402, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565675

RESUMO

Focal segmental glomerulosclerosis (FSGS) shares podocyte damage as an essential pathological finding. Several mechanisms underlying podocyte injury have been proposed, but many important questions remain. Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) is a serine/threonine kinase responsible for a wide array of cellular functions. We found that ROCK2 is activated in podocytes of adriamycin (ADR)-induced FSGS mice and cultured podocytes stimulated with ADR. Conditional knockout mice in which the ROCK2 gene was selectively disrupted in podocytes (PR2KO) were resistant to albuminuria, glomerular sclerosis, and podocyte damage induced by ADR injection. In addition, pharmacological intervention for ROCK2 significantly ameliorated podocyte loss and kidney sclerosis in a murine model of FSGS by abrogating profibrotic factors. RNA sequencing of podocytes treated with a ROCK2 inhibitor proved that ROCK2 is a cyclic nucleotide signaling pathway regulator. Our study highlights the potential utility of ROCK2 inhibition as a therapeutic option for FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Camundongos , Doxorrubicina/farmacologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/prevenção & controle , Camundongos Knockout , Podócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esclerose/metabolismo , Esclerose/patologia
6.
Oncol Res ; 32(4): 769-784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560569

RESUMO

Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival. The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect. To improve the treatment efficacy, we developed Pluronic P123 (P123)-based polymeric micelles dually decorated with alendronate (ALN) and cancer-specific phage protein DMPGTVLP (DP-8) for targeted drug delivery to breast cancer bone metastases. Doxorubicin (DOX) was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity (3.44%). The DOX-loaded polymeric micelles were spherical, 123 nm in diameter on average, and exhibited a narrow size distribution. The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release. The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells. Rapid binding of the micelles to hydroxyapatite (HA) microparticles indicated their high affinity for bone. P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model. In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity. In conclusion, our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Neoplasias da Mama , Poloxaleno , Humanos , Feminino , Micelas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ligantes , Qualidade de Vida , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Polímeros/química , Polímeros/uso terapêutico , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Ósseas/tratamento farmacológico , Alendronato/farmacologia , Alendronato/química , Alendronato/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico
7.
Oncotarget ; 15: 248-254, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588464

RESUMO

Acute myeloid leukemia (AML) is characterized by the rapid proliferation of mutagenic hematopoietic progenitors in the bone marrow. Conventional therapies include chemotherapy and bone marrow stem cell transplantation; however, they are often associated with poor prognosis. Notably, growth hormone-releasing hormone (GHRH) receptor antagonist MIA-602 has been shown to impede the growth of various human cancer cell lines, including AML. This investigation examined the impact of MIA-602 as monotherapy and in combination with Doxorubicin on three Doxorubicin-resistant AML cell lines, KG-1A, U-937, and K-562. The in vitro results revealed a significant reduction in cell viability for all treated wild-type cells. Doxorubicin-resistant clones were similarly susceptible to MIA-602 as the wild-type counterpart. Our in vivo experiment of xenografted nude mice with Doxorubicin-resistant K-562 revealed a reduction in tumor volume with MIA-602 treatment compared to control. Our study demonstrates that these three AML cell lines, and their Doxorubicin-resistant clones, are susceptible to GHRH antagonist MIA-602.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Leucemia Mieloide Aguda , Sermorelina/análogos & derivados , Camundongos , Animais , Humanos , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Doxorrubicina/farmacologia
8.
Med Oncol ; 41(5): 111, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592504

RESUMO

The use of doxorubicin (Dox) in the treatment of breast cancer negatively affects the intestines and other tissues. Many studies have proven that probiotics and vitamin D3 have antitumor and intestinal tissue-protecting properties. To achieve effectiveness and minimize side effects, the current study aims to administer Dox together with probiotics (Lactobacillus acidophilus and Lactobacillus casei) and vitamin D3. Forty-two female BALB/c inbred mice were divided into six groups: Group 1 (Control), Group 2 (Dox), Group 3 (Dox and probiotics), Group 4 (Dox and vitamin D3), Group 5 (Dox, probiotics, and vitamin D3), and Group 6 (probiotics and vitamin D3). The 4T1 mouse carcinoma cell line was injected into the mammary fat pad of each mouse. Gene expression was examined using quantitative real-time PCR. The treated groups (except group 6) showed significantly reduced tumor volume and weight compared to the control group (P < 0.05, P < 0.01). Probiotics/vitamin D3 with Dox reduced chemotherapy toxicity and a combination of supplements had a significant protective effect against Dox (P < 0.05, 0.01, 0.001). The treated groups (except 6) had significantly higher expression of Bax/Caspase 3 genes and lower expression of Bcl-2 genes than the control group (P < 0.05, 0.01). Coadministration of Dox with probiotics and vitamin D3 showed promising results in reducing tumor size, protecting intestinal tissue and influencing gene expression, suggesting a strategy to enhance the effectiveness of breast cancer treatment while reducing side effects.


Assuntos
Lacticaseibacillus casei , Neoplasias , Probióticos , Feminino , Animais , Camundongos , Lactobacillus acidophilus , Doxorrubicina/farmacologia , Probióticos/farmacologia , Modelos Animais de Doenças , Colecalciferol/farmacologia , Camundongos Endogâmicos BALB C
9.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , 60611 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
10.
Biochem Biophys Res Commun ; 710: 149889, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581955

RESUMO

The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.


Assuntos
Neoplasias da Mama , Estruturas Metalorgânicas , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Linhagem Celular Tumoral
11.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581365

RESUMO

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Fosfatidiletanolaminas , Polietilenoglicóis , Doxorrubicina/farmacologia , Óxido Nítrico , Fototerapia , Nanopartículas/uso terapêutico , Mitocôndrias , Lipídeos , Linhagem Celular Tumoral
12.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627904

RESUMO

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos dos Movimentos , Humanos , Feminino , Ciclofosfamida/efeitos adversos , Antraciclinas/uso terapêutico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Antibióticos Antineoplásicos , Doxorrubicina/farmacologia , Neoplasias da Mama/patologia , Transtornos dos Movimentos/tratamento farmacológico
13.
J Mater Chem B ; 12(12): 3022-3030, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426244

RESUMO

Lipid droplets (LDs) are cytoplasmic lipid-rich organelles with important roles in lipid storage and metabolism, cell signaling and membrane biosynthesis. Additionally, multiple diseases, such as obesity, fatty liver, cardiovascular diseases and cancer, are related to the metabolic disorders of LDs. In various cancer cells, LD accumulation is associated with resistance to cell death, reduced effectiveness of chemotherapeutic drugs, and increased proliferation and aggressiveness. In this work, we present a new viscosity-sensitive, green-emitting BODIPY probe capable of distinguishing between ordered and disordered lipid phases and selectively internalising into LDs of live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM), we demonstrate that LDs in live cancer (A549) and non-cancer (HEK 293T) cells have vastly different microviscosities. Additionally, we quantify the microviscosity changes in LDs under the influence of DNA-damaging chemotherapy drugs doxorubicin and etoposide. Finally, we show that doxorubicin and etoposide have different effects on the microviscosities of LDs in chemotherapy-resistant A549 cancer cells.


Assuntos
Compostos de Boro , Gotículas Lipídicas , Neoplasias , Gotículas Lipídicas/metabolismo , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/metabolismo , Etoposídeo/metabolismo , Lipídeos , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
14.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474556

RESUMO

Chemotherapy is a well-established method for treating cancer, but it has limited effectiveness due to its high dosage and harmful side effects. To address this issue, researchers have explored the use of photothermal agent nanoparticles as carriers for precise drug release in vivo. In this study, three different sizes of polydopamine nanoparticles (PDA-1, PDA-2, and PDA-3) were synthesized and evaluated. PDA-2 was selected for its optimal size, encapsulation rate, and drug loading rate. The release of the drug from PDA-2@TAX was tested at different pH and NIR laser irradiation levels. The results showed that PDA-2@TAX released more readily in an acidic environment and exhibited a high photothermal conversion efficiency when exposed to an 808 nm laser. In vitro experiments on ovarian cancer cells demonstrated that PDA-2@TAX effectively inhibited cell proliferation, highlighting its potential for synergistic chemotherapy-photothermal treatment.


Assuntos
Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias Ovarianas , Polímeros , Quercetina/análogos & derivados , Humanos , Feminino , Fototerapia/métodos , Hipertermia Induzida/métodos , Neoplasias Ovarianas/tratamento farmacológico , Doxorrubicina/farmacologia
15.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474668

RESUMO

Anthracycline antibiotics, namely, doxorubicin (DOX) and daunorubicin, are among the most widely used anticancer therapies, yet are notoriously associated with severe myocardial damage due to oxidative stress and mitochondrial damage. Studies have indicated the strong pharmacological properties of Berberine (Brb) alkaloid, predominantly mediated via mitochondrial functions and nuclear networks. Despite the recent emphasis on Brb in clinical cardioprotective studies, pharmaceutical limitations hamper its clinical use. A nanoformulation for Brb was developed (mMic), incorporating a cationic lipid, oleylamine (OA), into the TPGS-mixed corona of PEGylated-phosphatidylethanolamine (PEG-PE) micelles. Cationic TPGS/PEG-PE mMic with superior Brb loading and stability markedly enhanced both intracellular and mitochondria-tropic Brb activities in cardiovascular muscle cells. Sub-lethal doses of Brb via cationic OA/TPGS mMic, as a DOX co-treatment, resulted in significant mitochondrial apoptosis suppression. In combination with an intense DOX challenge (up to ~50 µM), mitochondria-protective Brb-OA/TPGS mMic showed a significant 24 h recovery of cell viability (p ≤ 0.05-0.01). Mechanistically, the significant relative reduction in apoptotic caspase-9 and elevation of antiapoptotic Bcl-2 seem to mediate the cardioprotective role of Brb-OA/TPGS mMic against DOX. Our report aims to demonstrate the great potential of cationic OA/TPGS-mMic to selectively enhance the protective mitohormetic effect of Brb to mitigate DOX cardiotoxicity.


Assuntos
Berberina , Doenças Mitocondriais , Fosfatidiletanolaminas , Polietilenoglicóis , Humanos , Micelas , Berberina/farmacologia , Cardiotoxicidade/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Vitamina E/farmacologia , Apoptose , Doenças Mitocondriais/tratamento farmacológico
16.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543040

RESUMO

Doxorubicin is an effective chemotherapeutic agent in the treatment of solid hematological and non-hematological carcinoma. However, its long-term usage could result in side effects, such as cardiomyopathy, chronic heart failure, neurotoxicity and cancer cell resistance. In this study, we reported the sensitivity enhancement of A549 human lung cancer cells on doxorubicin at a low dose (0.1 ppm) in combination with 10-60 ppm of crude and alkaloid extracts derived from the leaves of Kratom (Mitragyna speciosa (Korth.) Havil. Rubiaceae). A549 cancer cell lines were insensitive to the crude extract containing low mitragynine (MG) (4-5%), while these cells were moderately inhibited by the alkaloid extract containing 40-45% MG (IC50 of 48-55 ppm). The alkaloid extract was found to inhibit A549 cancer cells via apoptosis as suggested by the higher relative fluorescence intensity with Annexin compared to that in propidium iodide (PI), i.e., a positive Annexin and a negative PI. The combination of crude extract and doxorubicin sensitized A549 cancer cells to doxorubicin by 1.3 to 2.4 times, while the combination with the alkaloid induced a 2.6- to 3.4-fold increase in sensitivity. The calculated combination index (CI) for doxorubicin with the crude and alkaloid extracts was 0.6 and 0.3, respectively, showing potential synergistic combinations to reduce the level of dosage of doxorubicin used in chemotherapy. In addition, the synergistic enhancement effect of crude extract on the cytotoxic activity of doxorubicin provides insights into the plausibility of non-alkaloids to influence the biological activities of Kratom.


Assuntos
Neoplasias Pulmonares , Mitragyna , Alcaloides de Triptamina e Secologanina , Humanos , Extratos Vegetais/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/induzido quimicamente , Doxorrubicina/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Anexinas
17.
J Colloid Interface Sci ; 665: 329-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531278

RESUMO

We demonstrate that cytosine moieties within physically cross-linked supramolecular polymers not only manipulate drug delivery and release, but also confer specific targeting of cancer cells to effectively enhance the safety and efficacy of chemotherapy-and thus hold significant potential as a new perspective for development of drug delivery systems. Herein, we successfully developed physically cross-linked supramolecular polymers (PECH-PEG-Cy) comprised of hydrogen-bonding cytosine pendant groups, hydrophilic poly(ethylene glycol) side chains, and a hydrophobic poly(epichlorohydrin) main chain. The polymers spontaneously self-assemble into a reversibly hydrogen-bonded network structure induced by cytosine and directly form spherical nanogels in aqueous solution. Nanogels with a high hydrogen-bond network density (i.e., a higher content of cytosine moieties) exhibit outstanding long-term structural stability in cell culture substrates containing serum, whereas nanogels with a relatively low hydrogen-bond network density cannot preserve their structural integrity. The nanogels also exhibit numerous unique physicochemical characteristics in aqueous solution, such as a desirable spherical size, high biocompatibility with normal and cancer cells, excellent drug encapsulation capacity, and controlled pH-responsive drug release properties. More importantly, in vitro experiments conclusively indicate the drug-loaded PECH-PEG-Cy nanogels can selectively induce cancer cell-specific apoptosis and cell death via cytosine receptor-mediated endocytosis, without significantly harming normal cells. In contrast, control drug-loaded PECH-PEG nanogels, which lack cytosine moieties in their structure, can only induce cell death in cancer cells through non-specific pathways, which significantly inhibits the induction of apoptosis. This work clearly demonstrates that the cytosine moieties in PECH-PEG-Cy nanogels confer selective affinity for the surface of cancer cells, which enhances their targeted cellular uptake, cytotoxicity, and subsequent induction of programmed cell death in cancer cells.


Assuntos
Neoplasias , Polímeros , Nanogéis , Polímeros/química , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Apoptose , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico
18.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
19.
Cancer Rep (Hoboken) ; 7(3): e2049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38522013

RESUMO

BACKGROUND: Metastasis has been a cause of the poor prognosis and cancer relapse of triple-negative breast cancer (TNBC) patients. The metastatic nature of TNBC is contributed by the breast cancer stem cells (CSCs) which have been implicated in tumorigenesis. Higher expression of epidermal growth factor receptor (EGFR) in breast CSCs has been used as a molecular target for breast cancer therapeutics. Thus, it necessitates the design and generation of efficacious EGFR inhibitors to target the downstream signaling associated with the cellular proliferation and tumorigenesis of breast cancer. AIM: To generate efficacious EGFR inhibitors that can potentiate the chemotherapeutic-mediated mitigation of breast cancer tumorigenesis. METHODS AND RESULTS: We identified small molecule EGFR inhibitors using molecular docking studies. In-vitro screening of the compounds was undertaken to identify the cytotoxicity profile of the small-molecule EGFR inhibitors followed by evaluation of the non-cytotoxic compounds in modulating the doxorubicin-induced migration, in-vitro tumorigenesis potential, and their effect on the pro-apoptotic genes' and protein markers' expression in TNBC cells. Compound 1e potentiated the doxorubicin-mediated inhibitory effect on proliferation, migration, in-vitro tumorigenesis capacity, and induction of apoptosis in MDA-MB-231 cells, and in the sorted CD24+-breast cancer cells and CD24-/CD44+-breast CSC populations. Orthotopic xenotransplantation of the breast CSCs-induced tumors in C57BL/6J mice was significantly inhibited by the low dose of Doxorubicin in the presence of compound 1e as depicted by molecular and immunohistochemical analysis. CONCLUSION: Thus, the study suggests that EGFR inhibition-mediated sensitization of the aggressive and metastatic breast CSCs in TNBCs toward chemotherapeutics may reduce the relapse of the disease.


Assuntos
Receptores ErbB , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Doxorrubicina/farmacologia , Receptores ErbB/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Recidiva , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
20.
Int J Biol Macromol ; 265(Pt 1): 130709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462120

RESUMO

Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Sulfatos de Condroitina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Porfirinas/farmacologia , Porfirinas/química , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...